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Abstract
ConventtonaT’giobal event analysis osing'the sphericity tensor is
shown to be b1ased against shapes with degenerate radii ‘and van1sh1ng
flow ang]es for mu1t1p11c1t1es M < 100. The Jacob1an respon51b]e for
that bias is computed analyt1ca11y We construct a Jacob1an free -
d1str1but1on that e11m1nates most of the 0(1//M) d1stort1ons Finally,
an~ az1mutha11y corrected spher1c1ty matr1x is shown to be usefu] in

search1ng for co11ect1ve flow phenomena in nuc]ear collisions.

The general sphericity matrix [1-3] is given by

M
S'IPJ = \E w\’p.l(\))pj(") s

where i,j =1,2,3 refer to a Cartesian coordinate-system‘with the 3-axis

pointed along the beam direction, and w are scalar weight factors. Measure-
ment of S requires the determination of the momenta p(v) of M particles in each

event. Therefore, S measures global properties of the reaction. Intereét,has.

focused recent]y on g]oba] analysis in the area of nuclear collisions [2- 9]

because of its prom1se in searching for collective flow phenomena [101
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In this letter, wé show, however, that conventiﬁna] sphericity analysis

does not provide accurate event shape determination for multiplicities
M < 100. The source of the distortions is identified as a Jacobian factor
reflecting the true phase spéce dénsity of eigenvaiue§ and rotation angies of
S. We sﬁow that dividing the distributiOn function of eigenvalues by that
Jacobian eliminates most of the distortion to order 1//M and leads to a'hqre
modei-independent event shape analysis. We begin by computing the
distfibution function{of sphericity'matrix elements as a function of
multipiicity.h Numericai.éxamplqs Based on‘Monte'Carlo sampling of general
Gaussian distributions iiiustrate dgf points. | ~

| Given an prartiﬁiebinciusive distribution‘pM nqrma]ized to unity,_the
joint p(oba?ility_qen§ity‘to find the“matrix e]emenfs of Slbetween iij and
T

. +
g aTiy is.

@M(T) = .[d3g(1) ces d3B(M) pM(B(l), cees E(Mi) TW. §(S.. - Tij) . (2)

i»j

The average value of Sij depends, however, only on the single-particle

inclusive distribution 01

i =,Mfd3p piPyor(P) =M PP . | )

We assume henceforth thét'wv =1 for simplicity*. 1In the limit M 5 «, the
central limit theorem assures us that @M(TN) will be of Gaussian form and
a strongly peaked function around Tij = <Sij>' Therefore, what eq. (2) |

reveals are the finite number fluctuations around those average values.

- *The Jacobian we compute (eq. (6)) and the numerical results with the

generalized Gaussian model (eq. (9)) are independent of v .

v
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Since‘Sij provides‘basically a measurement of the second moments of the

single-particle inclusive-distribution ol(p),'it is important to recall why

we need to measure all M particle momenta in the first place. : The answer is
that any single-particle measurement necessarily averages over the azimuthal
angle, ¢, of the reaction plane. Therefore, only the ¢-averaged sphericity

moments can be determined via single-particle inclusive distributions. Note

" that by measuring pl(p) associated with multiplicity cuts [7,8] we can

/

eliminate much of the impact parameter averaging; i.e., a narrow range of

partial waves'can be isolated. However, mu1tip11city triggers cannot

Ve]iminate the average over ¢. This loss of information is restored only via

global event analysis. .By studying the distribution of sphericity matriéeé, -

the ¢ averaging can be circumVented, and the true three~dimensiona1 event

structure can be revealed.

The geometrical content of S is exhibited by diagonalizing it as follows:

S = AFAT o | | : | (4)

“where F < diag (f1.f5.f4) is the diagonal matrix of eigenvalues ordered such

that 0 < fy < f, < 3 and
he R R0 RO P

is a product of the’orthogonal rotétion.métrices abbut the fixed z, y, and z
axes with angles X, o, and ¢, respectively. Clearly (9,¢) are the pblar and
azimuthal angles of 'the eigenvector, e; = Aez, associated with the largest.
eigenva]ue;‘fé. PHysica11y, o corresponds to the angle of most rapid-.
collective matter flow, while ¢ ‘is an estimate of the azimuthal angle of the
reaction plane. The next most rapid collective f]ow:is oriented along éz =
Aey, while the slowest collective flow is a]ong"e1-=_e3 X-é2 with -our

convention. Because S is symmetric the event shape is assumed to be symmetric



under space inversion. Therefore, S characterizes an event in momentum space

as an oriented ellipsoid with principal axes along e; and radii /Fi'

Since ¢ is not undek our control, we are interested not in ¢M(Sij)’
but rather in the distribution, dGPM/dfldfédf3dod¢dX, of eigenvaldes
and rotation ang1es.; However,‘transfbrming variables from Sij to
(fi,0,8,X) necessariiy brings in a Jacobian factor
IF0) = | o tAEA L
- L [fi3°9¢5X]
= sine (fy - f1)(f5 ~ f,)(f, - f;)
= sine J(fi) . o _.. ' ; " (6)
so that
d®p,, e T o
¥ 37 37 ;35060 = @y(AFA") J(f;) sine . N B . (7)
Note that PMlis normalized shéh that:

o fa f, /2 . T
' - ) : . 6 =
.,_S dfy s. df,. J. df J# de J' d¢ j. XdPy=1 . (8
0 0 0 0 T 0 ' '

Equation (6) can be verified by direct algebra. Thevoccurfénce of the

' Vandermonde determinant, J(fi),.of eigenvalues of symmetric matrices is a
_resu1£ known from thé'iheory of random matrices [11]. This combination of
‘eigénvalues follows from dimensional analysis and the nonexistence of the
inverse ﬁransformatioh when'two or more eigenvalues ‘are the same.
Geometrica]]y, the Jaéobfaﬁ §imd]y'ref]écts.the fact that the number of
ellipsoids with degenerate radii is much smaller than the number with nonequal
radii. Physically, J has the effect of ~suppressing very'stroné]y event shapes

close to a sphere, a cigar or a pancake.

Y
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Thus, even though @Mapeaks strongly for M >> 1 around the true

averages, eq. (3), the peak of dGPM will be shifted by order 1/V/M from the

true eigenvalues for near degenerate cases. A]though that shift is only
0(1/v/M), we show below that it is surprisingly large for multiplicities
M < 100. -The sine factor induces a similar shift of the peak in the flow

angle when it is close to 0.,%Note_also that when evaluating average.

'qpantities such as <e> and <f3/f1>,'there is an additional distortion of

order 1//M because polar angles are'[amited.to positive values and f3vis
enforced to be greater than f,. | -

The finite multiplicity distortions of average flow quantities are shown
in fig. 1. The curves were obtained:via Monte Carlo evaluation of <e> and
<f3/f1> for‘different multiplicities M as a function of an assumed vajue
of ra = f3/f1 and an orientation o =‘0.' Specificaliy, we sampled~M

momenta from the general uncorrelated Gaussian form

oy = exp[-M/2 Tr 35;}11] . . CT | (9)
with Sth =R (eth) thRy( th) and F th = diag(1, 1 r31) From the M momenta so

generated S was computed and d1agona11zed to obtaln the (f?bs,90b5,¢°bS,XObs)

data. This process was repeated 1000 times to obta1n <90bs> and fgbs/f?bs

for various assumed r31 and %nh = 0.

For the cigar shape with r31'= 2 and otﬁ = 0 in the theoretical distri-

bution, we see from fig. 1 that for multiplicity M- 10, <90bs> z?‘33", and

ObS/f(l)bs> ~6,1! For a theoretical sphere T3 =“1, <0 ~

<
3
required by symetry, but <f3°°/fS°%> ~ 4.8, 2.8, 2.0, and 1.5 for M = 10, 20,

obs > ~ 57°, as

40, and 100, respectiVe]y. For the pancake shape with r 1 = 2/3 e, =0

3 th
/ . _ ) =
(corresponding to f /f =f /f1 = 3/2 gth __90 ) obs> ~ 68°,
ObS/fObs ~ 5.2 for M = 10. We see that the average flow character1st1cs of

the shapes of greatest theoretical interest [3] are s1gn1f1cant1y distorted.
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Figure 1 also shows the results of intranuclear cascade calculations [3]
for Ne + Ne, Ar + Ar, and U + U collisions at 250 A MeV. The striking feature
to note is that for Ne and Ar the points lie very close to the curves
corfesponding to zero flow angle: ‘In particular, Ar + Ar does not even reach
a spherical shape at b = 0. On the other hand, U does reach the spherical
shape at b = 0, and there is a nonvanishing flow angle for intermediate impact
parameters. Thus, even though the Ar and'U results seem to coincide for
intermediate impact parameters "in the f1ow diagram [3], the con¢1hsions about
whether these nuclei flow differ.becauSe of the finite multiplicity .
distortions. |

Simple analytic formulas can be obtained in special cases. For the
uncorrelated Gaussian distribution, eq. (9), @M‘is given by

" .

?--2

S ' S |
- » Tr(AFA S;))
‘?i : th (det F)

Sy (AFAT) = e (10)

Note that for M>>1, QM < exp[=M/4 Tr 552]'is'indeed of - Gaussian form with

8S = AFA+SEa—1. Equation (10) is obtained by noting that the exponential
factor, gq,:(9),ucan‘be pu]]ed:out of the integral because S is replacéd by
T. . Next, changing variables from p(p) to'A"1p(v).for a1j v and noting thét
the Jacobian [35(ATA‘1)/36(f)[ =1, the pfoduct.of_delfa functions is H
transformed to-s(Sll —.fl)s(Szz - f2)5(533_— f3)5(512)6(513)6(523). Changing
finally to dimensionless variables pi(v)//?i, wé.oﬁtain (det F)MIZ-Z times a
constant dependent pnly on M (which is of no_interest herg).

For a Gaussian sphere, Sth =1, eq. (10) reduces to

| 3
sy(PFATL) = exp;- > 1};‘,1 l:fi - (1 - %)Rn'fi]f . (1)

which indeed maximizes when f.1 = f2 = f3. However, the maximum of PM is

shifted by O(I/JM). A simple fit to our numerical results fbr M > 20 gives

\/
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Given a Gaussian distribution, eq. (9), the average sphericfty matrix

elements from ed. (3) are simply <Sij Sth and the var1ance of the matrix
. elements decreases with M as
1/2 1/2 :
2 ' 2 1 theth th,2 : R
-.> - <S.. S S Lo
\ [<S]J> <S1J> ] m( ”SJJ (S'IJ) > | | (13)
With eq. (13) an asymptotxc formu]a for <Oobs> can be obta1ned for c1gar shapes
2 2 2 2
f1 = f2, f3 = r31 1 by noting that <S Syz> a:<9_(f3 - fl) > for o <ng/2.
Therefore, <o, > =~ 57 ( 1/M)I/Z/(r31 - 1). This shows that angular distor-

t1ons are swgn1f1cant e1ther for small M or for ra close to un1ty
We have seen that the simple method of global analysis proposed in
refs. [2,3] suffer from Iatge finite mU]tip]icity distortions. An obvious way

- to eliminate the order 1//M distortions is fo diVide the measured d6PM in

eq. (7) by J(f;,e) and search for maxima of d6PM/J. However, fn
practicé enormous numbers of events would have fo be measured to locate maxima
of such a six-dimensidna] distribution. Therefore, practical considerations
’ force us to consider one- and two-dimensional projections of ¢M'
Consider, in pariicu]ar,vthe double differential distribution of aspect
ratios ryp = f3/f2;-r21 = fz/fl’
_ 3

& j - ( 08 (r. y M
— = | af dfdf, slry, - £5/F,) s(r, - f,If
. dr32dr21 12 3. 372 21 2" 1 :dfldfgdf3
r d p :
) v 21 2 M
v S = T )3 J,E‘dE E‘W il (14)
- 21 21 32 ’

0
. . 3 .
where in the last line d PM is evaluated at fi such that E = Zfi, roq = fz{fl,

Py = f3/f2i The reason we chose (r32,r21) rather than (r31,r21) above is that
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have a range 1 to «». Because d3P includes the Jacobian J(f.)

both r and r
M i

32 21
from eq. (6),

3 o |
 ETrpy(rgp-1)(rpy-1){rgprpy-1)

IF.) = ,
S )

i (15)

217721 32

d2N must vanish along the lines rap = 1 and rop = 1. This is illustrated in

fig. 2a,c,e. These figures“were obtained by performing the integration over
E,e,d,Xx in eq. (14) via the Monte Carlo Metropolis algorithm for d6PM
given by eqs. (7,10).

3

It is now clear that, except for the dimensional 3 factor in eq. (15),

we can eliminate the bulk of thé distortion in dZN by defining a "corrected"
distributibn |

)6 2

+r,.r
. — 21 21 23 d gr ) (16)

= dr
21 r21(r32-1)(r2151)(r32r21-1) 32721

dZQL (1+r
dr32dr

The dimensionless weight function in eq. (16) arises.because we divide by the
basic Véndermonde'dacobian; eq. (15), as well as the Jacobian in eq. (14)
stemming from our choice of variables.

The corrected distributions are illustrated in fig. 2b,d,f. Note that
unlike dzN, the peak of d29lis much closer to the input theoretical
ratios. In particular, the sphere; cigar, and pancake shapes are immediately
resolved by searching for the maximum of d24u There is one important
caveat, however. For any fixed multiplicity M there is“a critical value,
}crit’ of the aspect ratio rg, below which dZOLpeaks at rap = To1 = 1. For Y

M = 20, 40, 80, we find that r crit(M)’

crit =~ 1.8, 1f5’ and 1.3. For rgp < r

shape resolution is lost.

[l'/
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Cons ider next the distributioh, dN/dcoso, of flow angles. Ih fig. 3a we
show thé results obtained by Monte Carlo integration for an assumed cigar
shape ry; = 1.9, ry = 1.0 driented at 20° with respect to the 3-axis.

For M = 100, dN/dcose c]eah]y peaks at the correct angle. For M < 40,
however, dN/dcose peaks below 20°, and M < 20, dN/dcose maximizes at 0°. (of
course, dN/de always peaks away from e = 0).

The ability to resolve a finfte flow angle %th depends strongly on M
and ray- Figure 1 gives a qua]itati?e guide to the angular resolution for
fixed M>and rap The'cqrves'for fixed M correspond to the flow angle
f]uctuafions about e = 0 for a given r3i. It is c]ear‘that'we cannot
resoivé flow angles that.are much smaller thﬁn ~<0>/2 because po1af angles
must be pdgitive. Sincé fhe éign of o is kept track of only vié ¢, which we
sum over, dN/d&oso is effectively the sum of two distributioné, 6ne |
corresbondiné to positive o (i.e., |¢| < =/2) and the other to negative o
(i.e., n/2 < |8] < =). When the true f]ow‘ang]e‘ié less than ~<e>/2, these
two contributions add suchAthat the peak of dN/dcose occurs near e = 0. It is
iﬁportantfto emphasize that'the only trué signature of collective flow is a
clear maximum of dN/dcose’away from 6 =-0. Average quantities such as <o> are
strongly distorted py finite multiplicity f]uctuations.t |

As a final handie on the finite multiplicity dfstortions, we consider
event shape‘ana1ysis”in the'rotated frame where ¢ = 0. That frame yaries, of
coufse,‘fromvevgnt to event. For 1argé r3i1s ©» and M it is clear that 9
fluctuates abdut the true azimuthai ahg]e of the reaction plane. Not knowing
the react{on plane, Qe cah épproximate its azimuthé] ang]e.by ¢ itself.
Consider now the average of the‘sphericity matrix rotated by -¢ about the z
axis |

' <Sij> = <Ry (-8) SR, (8)>;5 = MR, ()

j it RZ(_"¢)J'J'|p-inJ’I> . (17)
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This average, unlike eq. (3), depends on the ful]}M particle distribution
because it requires knowledge of ¢(El, ;.., BM)‘ Diagonalizing <S'> we
obtain a polar angle o' and eigenvalue f'i. Figure 3b shows @' versus
r'32 = f'3/f'2‘for M = 40 for a variety of cigar shapes and
orientations. The sphere js located at o' = 57° and an aspect ratio r'32
given approximately byv
ri, ~1+ 2.7/1/m . , o (18)
As a‘function of M the»grid pattern shifts so that the spheke point follows
eq. (18). The most important feature to note in fig. 3b is that this
phi-rotafed aspect ratio is much less distorted than the unrotated r31>ratio
in fig; 1. For M = 40, rap 2 1.5 can be easi]y resolved. Furthermore, the
angular distortion is also far- less for the theoretically interesting
range [3] 1.5 < rap < 2.5. AnaTysis in terms of o' and r'ao is therefore
usefﬁ] when only a limited number of events can be.measuredv[7,8].
Differential distributions such aS‘dZN/dr32dr2] and dN/dcose require
high statistics [9]. What fig. 3b shows is that for realistic multiplicities,
M~ 50, a significant reduction in distortion-is possible by averaging
phi-rotatedvsphericity matrices and then calculating &' versus r'32.
We conclude that in searching for collective flow effects the role of
finite multiplicity distortions for M < 100 needs special‘attention. The
simplest reduction of such distortions is achieved‘by the ¢-rotated analysis
in terms of e' and r'32. However, confirmation of true flow angle requirés ¢
a'maximum of dN/dcose. When high enough statistics are available, then the ¥
Jacobian free distribution, dzmldr32dr21, provides the most |

distortion-free shape information.
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Figure Captions

Fig. 1.

Fig. 2.

Fig. 3.

The average polar angle and aspect ratio f3/f1 for events sampled

" from eq. (9) with different multiplicities M and aspeét ratios r3 and

| 94, = 0. The sphere is mapped onto the <o> = 57° line with

<f3/f1> giveh by eq. (12). The diamonds, triangles, and dots
correspond.‘to the intranuc]ear calculations of ref. [3] for Ne +'Ne,
Ar + Ar, U + U at 250A MeV, respectively. Note_thaf only U
collisions involve finite flow angles.

(a,c,e) Double differential distribution of aspect ratios

rgp = T3lfp and vy = £,/f) with &®N/dra,dry; given by eq. (14).
(b;d,f) The Jacobian free dzﬂ/dr32dr21 given by eq. (16).

Contours show relative intensity for sphere (a,b), cigar with

ray = 1.9 (c,d), and pancake with ra =»l.9 (e,f). ’

a) Differential distribution of cose plotted versus e for a cigar
shape rq; = 1.9 oriented at o = 20°. . The depéndence én -
multiplicity M is illustrated. |

b) Polar angle o' and aspect ratio f'3/f'2 obtained by
diagoné]izing the average ¢-rotated sphericity matrik, eq. (17).

The grid illustrates how the theoretical rectangular gkid in o, and

rao js distorted for M = 40. The sphere point follows eq. (18).

- Note that the interesting region [3] for nuclear collisions

1.5 < 3o < 2.5 is much less distorted in this diagkam than in

fig. 1.
%
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